首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9139篇
  免费   814篇
  国内免费   627篇
  2023年   109篇
  2022年   130篇
  2021年   434篇
  2020年   335篇
  2019年   387篇
  2018年   430篇
  2017年   274篇
  2016年   399篇
  2015年   590篇
  2014年   661篇
  2013年   658篇
  2012年   855篇
  2011年   784篇
  2010年   444篇
  2009年   386篇
  2008年   468篇
  2007年   378篇
  2006年   350篇
  2005年   299篇
  2004年   237篇
  2003年   183篇
  2002年   175篇
  2001年   179篇
  2000年   154篇
  1999年   168篇
  1998年   79篇
  1997年   83篇
  1996年   72篇
  1995年   89篇
  1994年   90篇
  1993年   59篇
  1992年   88篇
  1991年   77篇
  1990年   68篇
  1989年   44篇
  1988年   56篇
  1987年   35篇
  1986年   42篇
  1985年   53篇
  1984年   26篇
  1983年   17篇
  1982年   21篇
  1981年   11篇
  1979年   10篇
  1978年   14篇
  1977年   10篇
  1974年   11篇
  1972年   6篇
  1969年   5篇
  1968年   8篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
In recent years, chimeric antigen receptor T (CAR T)-cell therapy has shown great potential in treating haematologic disease, but no breakthrough has been achieved in solid tumours. In order to clarify the antitumour mechanism of CAR T cell in solid tumours, the pharmacokinetic (PK) and pharmacodynamic (PD) investigations of CD19 CAR T cell were performed in human leukaemic xenograft mouse models. For PK investigation, we radiolabelled CD19 CAR T cell with 89Zr and used PET imaging in the CD19-positive and the CD19-negative K562-luc animal models. For PD evaluation, optical imaging, tumour volume measurement and DNA copy-number detection were performed. Unfortunately, the qPCR results of the DNA copy number in the blood were below the detection limit. The tumour-specific uptake was higher in the CD19-positive model than in the CD19-negative model, and this was consistent with the PD results. The preliminary PK and PD studies of CD19 CAR T cell in solid tumours are instructive. Considering the less efficiency of CAR T-cell therapy of solid tumours with the limited number of CAR T cells entering the interior of solid tumours, this study is suggestive for the subsequent CAR T-cell design and evaluation of solid tumour therapy.  相似文献   
62.
Magnetotactic bacteria (MTB) are diverse prokaryotes that produce magnetic nanocrystals within intracellular membranes (magnetosomes). Here, we present a large-scale analysis of diversity and magnetosome biomineralization in modern magnetotactic cocci, which are the most abundant MTB morphotypes in nature. Nineteen novel magnetotactic cocci species are identified phylogenetically and structurally at the single-cell level. Phylogenetic analysis demonstrates that the cocci cluster into an independent branch from other Alphaproteobacteria MTB, that is, within the Etaproteobacteria class in the Proteobacteria phylum. Statistical analysis reveals species-specific biomineralization of magnetosomal magnetite morphologies. This further confirms that magnetosome biomineralization is controlled strictly by the MTB cell and differs among species or strains. The post-mortem remains of MTB are often preserved as magnetofossils within sediments or sedimentary rocks, yet paleobiological and geological interpretation of their fossil record remains challenging. Our results indicate that magnetofossil morphology could be a promising proxy for retrieving paleobiological information about ancient MTB.  相似文献   
63.
Thermoplasmata is a widely distributed and ecologically important archaeal class in the phylum Euryarchaeota. Because few cultures and genomes are available, uncharacterized Thermoplasmata metabolisms remain unexplored. In this study, we obtained four medium- to high-quality archaeal metagenome-assembled genomes (MAGs) from the filamentous fragments of black-odorous aquatic sediments (Foshan, Guangdong, China). Based on their 16S rRNA gene and ribosomal protein phylogenies, the four MAGs belong to the previously unnamed Thermoplasmata UBA10834 clade. We propose that this clade (five reference genomes from the Genome Taxonomy Database (GTDB) and four MAGs from this study) be considered a new order, Candidatus Gimiplasmatales. Metabolic pathway reconstructions indicated that the Ca. Gimiplasmatales MAGs can biosynthesize isoprenoids and nucleotides de novo. Additionally, some taxa have genes for formaldehyde and acetate assimilation, and the Wood–Ljungdahl CO2-fixation pathway, indicating a mixotrophic lifestyle. Sulfur reduction, hydrogen metabolism, and arsenic detoxification pathways were predicted, indicating sulfur-, hydrogen-, and arsenic-transformation potentials. Comparative genomics indicated that the H4F Wood–Ljungdahl pathway of both Ca. Gimiplasmatales and Methanomassiliicoccales was likely obtained by the interdomain lateral gene transfer from the Firmicutes. Collectively, this study elucidates the taxonomic and potential metabolic diversity of the new order Ca. Gimiplasmatales and the evolution of this subgroup and its sister lineage Methanomassiliicoccales.  相似文献   
64.
We report data from laboratory experiments where participants were primed using phrases related to markets and trade. Participants then participated in trust games with anonymous strangers. The decisions of primed participants are compared to those of a control group. We find evidence that priming for market participation affects positively the beliefs regarding the trustworthiness of anonymous strangers and increases trusting decisions.  相似文献   
65.
MicroRNAs (miRNAs) serve as gene silencers involved in essential cell functions. The role of miR-206 and E74-like factor 3 (Elf3) has been identified in osteoarthritis (OA), while the effect of exosomal miR-206 from bone marrow mesenchymal stem cells (BMSCs) in OA remains largely unknown. Thus, we aim to explore the role of exosomal miR-206 from BMSCs in OA with the involvement of Elf3. BMSCs and BMSC-derived exosomes (BMSC-exos) were obtained and identified. OA mouse models were constructed by anterior cruciate ligament transection and then treated with BMSC-exos or BMSC-exos containing miR-206 mimic/inhibitor. The expression of miR-206, Elf3, inflammatory factors, osteocalcin (OCN) and bone morphogenetic protein 2 (BMP2) in mouse femoral tissues was assessed. The pathological changes in mouse femur tissues were observed. The mouse osteoblasts were identified and treated with untransfected or transfected BMSC-exos, and then, the expression of miR-206, Elf3, OCN and BMP2 was determined. The alkaline phosphatase (ALP) activity, calcium deposition level, OCN secretion, proliferation, apoptosis and cell cycle arrest in osteoblasts were measured. MiR-206 was down-regulated while Elf3 was up-regulated in OA animal and cellular models. Exosomal miR-206 ameliorated inflammation and increased expression of OCN and BMP2 in mouse femoral tissues. Moreover, exosomal miR-206 promoted ALP activity, calcium deposition level, OCN secretion and proliferation and inhibited apoptosis in OA osteoblasts. Overexpressed Elf3 reversed miR-206 up-regulation-induced effects on OA osteoblasts. BMSC-derived exosomal miR-206 promotes proliferation and differentiation of osteoblasts in OA by reducing Elf3. Our research may provide novel targets for OA treatment.  相似文献   
66.
Summary

We have investigated antioxidant actions of acteoside (ACT) and another natural phenylpropanoid glycoside, cistanoside F (CIS-F) on lipid peroxidation in rat liver mitochondria (RLM) and rat liver mitochondrial lipid (RLML) liposomes induced by Fe2+/ADP. A synthetic ACT analogue, TX-1847, was also examined. Oxygen consumption, the formation of thiobarbituric acid reactive substances (TBARs) and glutathione concentration were determined simultaneously during lipid peroxidation. The radical scavenging activity of the compounds was evaluated by using 1,1-diphenyl-2-picrylhydrazyl. ACT and its analogs produced dose-dependent inhibitions of mitochondrial and liposomal lipid peroxidation (ACT ≈ CIS-F > TX-1847). Their radical scavenging activities were ranked as follows: TX-1847 > ACT > CIS-F. ACT, CIS-F, and TX-1847 spared reduced glutathione (GSH) during mitochondrial lipid peroxidation. The radical scavenging activities of the compounds did not parallel their anti-peroxidative activities. The data are consistent with the idea that the inhibitory activities of phenylpropanoids were primarily due to a radical chain-breaking mechanism. The sugar moieties in ACT and CIS-F, and/or the conformational structure of the compounds, also seem to play an important role in their inhibitory effects on lipid peroxidation.  相似文献   
67.
In chloroplasts, tetramethyl-p-hydroquinone supports high rates of phosphorylation-coupled, noncyclic electron flow through Photosystem I to methylviologen. The reaction is totally sensitive to dibromothymoquinone, indicating an electron donation to the plastoquinone region of the photosynthetic chain. The uncoupled electron flow rate exceeds 1000 μequivalents per hour per mg chlorophyll. The phosphorylation efficiency (Pe2) at the optimal pH of 8 is 0.6–0.65. Presumably this ratio represents the efficiency of energy coupling in the electron transfer step plastoquinone → cytochrome f.  相似文献   
68.
We have studied the binding of azide ion to ferrihemoglobin in various water/ethylene glycol mixtures. The results show that the thermodynamic parameters are strongly dependent on the mole fraction of ethylene glycol. This dependence has been explained in terms of solvent effects and the transition between two forms of ferrihemoglobin stabilized in water and ethylene glycol.  相似文献   
69.
Cytokine storm and multi-organ failure are the main causes of SARS-CoV-2-related death. However, the origin of excessive damages caused by SARS-CoV-2 remains largely unknown. Here we show that the SARS-CoV-2 envelope (2-E) protein alone is able to cause acute respiratory distress syndrome (ARDS)-like damages in vitro and in vivo. 2-E proteins were found to form a type of pH-sensitive cation channels in bilayer lipid membranes. As observed in SARS-CoV-2-infected cells, heterologous expression of 2-E channels induced rapid cell death in various susceptible cell types and robust secretion of cytokines and chemokines in macrophages. Intravenous administration of purified 2-E protein into mice caused ARDS-like pathological damages in lung and spleen. A dominant negative mutation lowering 2-E channel activity attenuated cell death and SARS-CoV-2 production. Newly identified channel inhibitors exhibited potent anti-SARS-CoV-2 activity and excellent cell protective activity in vitro and these activities were positively correlated with inhibition of 2-E channel. Importantly, prophylactic and therapeutic administration of the channel inhibitor effectively reduced both the viral load and secretion of inflammation cytokines in lungs of SARS-CoV-2-infected transgenic mice expressing human angiotensin-converting enzyme 2 (hACE-2). Our study supports that 2-E is a promising drug target against SARS-CoV-2.Subject terms: Cell death, Molecular biology  相似文献   
70.
Intestinal mucosal injuries are directly or indirectly related to many common acute and chronic diseases. Long non-coding RNAs (lncRNAs) are expressed in many diseases, including intestinal mucosal injury. However, the relationship between lncRNAs and intestinal mucosal injury has not been determined. Here, we investigated the functions and mechanisms of action of lncRNA Bmp1 on damaged intestinal mucosa. We found that Bmp1 was increased in damaged intestinal mucosal tissue and Bmp1 overexpression was able to alleviate intestinal mucosal injury. Bmp1 overexpression was found to influence cell proliferation, colony formation, and migration in IEC-6 or HIEC-6 cells. Moreover, miR-128-3p was downregulated after Bmp1 overexpression, and upregulation of miR-128-3p reversed the effects of Bmp1 overexpression in IEC-6 cells. Phf6 was observed to be a target of miR-128-3p. Furthermore, PHF6 overexpression affected IEC-6 cells by activating PI3K/AKT signaling which was mediated by the miR-128-3p/PHF6 axis. In conclusion, Bmp1 was found to promote the expression of PHF6 through the sponge miR-128-3p, activating the PI3K/AKT signaling pathway to promote cell migration and proliferation.Subject terms: Cell growth, Cell migration  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号